

High Performance Lists in Java

Thomas Mauch
JavaZone 2015

Motivation: A Real World Example

The Analytical Engine:
● maintain a fixed window of

events ordered by time
● new events are added at the head and disappear

at the end
● various analytical functions can be applied to the events

in the window

The JDK Collections

https://docs.oracle.com/javase/tutorial/collections/
implementations/list.html

Most of the time, you'll probably use ArrayList, which offers
constant-time positional access and is just plain fast...

If you frequently add elements to the beginning of the List or
iterate over the List to delete elements from its interior, you
should consider using LinkedList…

But you pay a big price in performance, positional access
requires linear-time in a LinkedList...

https://docs.oracle.com/javase/tutorial/collections/

Analyis

● ArrayList would excel in the analysis part, but behave
poorly in adding the events

● LinkedList: vice versa

What will the good programmer do?
● Probably choose ArrayList with

a bad feeling

ArrayList: Not For Primitive Types

We need to store just int values, but ArrayList<Integer>
stores an Integer object for each value

How much memory is needed/wasted?
● 4 (!) times more memory needed

in a 32 bit environment
● 7 (!!) times more memory needed

in a 64 bit environment

ArrayList: Minimalistic API

● How many times did I have to write list.get(list.size()-1)
instead of getLast?

● ArrayList only implements List...
● LinkedList implements List and Deque...
● And ArrayDeque only implements Deque...
● Collections.synchronizedList() is not enough

ArrayList: Implementation

● ArrayList stores the elements contiguously in an array
● If there is not enough space, the array is extended
● The array does not shrink automatically

ArrayList: Operations

● Animations

GapList: Goals

Improve storage layout used by ArrayList to
● Make operations at the head of the list

as fast as at the tail
● Exploit locality of reference to speed up operations

happening near to each other

Locality of reference?
● Near storage locations are frequently accessed at the

same time

GapList: Cyclic Buffer

● Goal: Make operations at the head of the list as fast as at
the tail

● Solution: Use array as cyclic buffer
● Physical array index is created from the logical one using

a modulo operation

GapList: Gap

● Goal: Exploit locality of reference to
speed up operations happening near
to each other

● Solution: Allow one gap within array
● The gap is automatically created, moved, and removed as

needed

GapList: Operations

Animations

GapList: Performance

Great Performance
● Efficient access to elements by index

(as ArrayList)
● Efficient insertion and deletion at head and tail of list

(as LinkedList)
● Exploit the locality of reference for all other locations

GapList: Benchmarks

● Bechmarks prove
GapList is fast!

GapList: Features

● Interface IList extends List, Deque
● Support for storing primitive types:

– IntGapList returns int (interface IIntList)
– IntObjGapList returns Integer

(and can therefore implement IList)

Recipe
● Use GapList as drop-in replacement for ArrayList,

LinkedList, ArrayDeque

Is GapList the Universal List?

● Repeat adding elements to the end of a list until it
becomes large (10 mio elements)

● Elapsed time in for a single add operation:
● Most of the time ok (min: 0, avg: 0 ms)
● But sometimes bad: max: 34 ms!

● Also other operations on large collection
do not scale (e.g copying)

Large Collections

Special Requirements
● Memory must be used wisely
● All operations must be efficient regarding performance /

memory (e.g. copying)
● Support for bulk operations

BigList has been designed to meet these requirements

BigList: Goals

● Goal: Avoid moving many elements on insert / removal
● Solution: Store elements in small blocks

● Goal: Make copying large collections fast
● Solution: Share blocks between instances

BigList: Blocks

● Elements are stored in fixed-sized blocks
(no copying needed, default size 1000)

● If a block is full, the content is automatically split
in two blocks

● Blocks are also merged if two adjacent blocks are
both filled less than 35%

● Blocks are stored
as GapList

BigList: Block Tree

● For each operation, the affected block
must be determined first

● Blocks are maintained in a specialized tree for fast access
● Information for the last accessed block

is cached to exploit the locality of reference

BigList: Share Blocks

● Each block maintains a reference count to
support a copy-on-write approach

● Initially blocks have reference count of 1 (block is private,
modification allowed)

● If a list is copied, only the reference count needs to be
incremented (block is shared, must be copied before
modification)

● The reference count is automatically decremented again
by the finalizer

BigList: Implementation

BigList: Operations

● Animations

BigList: Features

BigList also implements the IList interface
● setAll(index,coll) / setArray(index, elems...) /

setMult(index,len,elem)
● Internal copying: copy / move, etc.
● External copying: transferCopy, etc.

 BigList also has classes for primitive types
● IntBigList, IntObjBigList, etc.

Benchmarks

● List with 1'000'000 elements
●

●

●

●

●

● And the winner is: BigList!

The Quest Has Come To An End!

Recipe:
● Use GapList instead of

ArrayList / LinkedList / ArrayDeque
● Use BigList instead of GapList

if the list can become larger
● Measure, don't guess

And Now For Something
Completely Different

Key Collections

Motivation

We need to maintain a list of
columns with name:
● columns are ordered
● column names must be unique
● efficient access to the columns by both index and name

Which collection do you choose?
How long does it take to implement?

Solution

The column list:
● Key1List<Column,String> cols =

new Key1List.Builder<Column,String>.
withKey1Map(Column::getName).
withPrimaryKey1().build();

● class Column {
String name;
String getName() {};

}

Constraints

● class Table {
List<Column> cols;

List<Column> getCols() {
return cols;

}
}

● UNSAFE!

Constraints

● class Table {
List<Column> getCols() {

return Collections.
unmodifiableList(cols);

}
}

● READ-ONLY

Constraints

● class Table {
void addColumn(Column col) {

check(col);
cols.add(col);

}
}

● POOR! or TEDIOUS!

Constraints

● class Table {
void setColumns(List<Column> cols) {

check(cols);
this.cols = cols;

}
}

● INEFFICIENT!

Constraints

● class Table {
Key1List<Column,String> cols ...
Key1List<Column,String> getCols() {

return cols;
}

}
● EASY!
● Constraints are important to have a powerful API

Keys

● A key is a value extracted from an element using a
mapper function

– Key1List<Column,String>
withKey1Map(Column::getName)

● With this approach, all key collections always handle a
Collection of elements,
no need to use a separate Map interface

Keys vs Maps

● Typical case:

– Class Column { String key; Column col; }
● How the JDK handles the typical case:

– Map<String,Column> cols;
col = new Column("name");
cols.put(col.getName(), col);

● How Key Collections handle the atypical case:

– Class KeyColumn { String key; Column col; }

Key Map and Element Set

● The collection of all key values extracted by a function is
called Key Map

– withKey1Map
● Also the elements itself can be used as key, this is called

the Element Set

– withElemSet
● Keys can be used for fast access

– getByKey1("A")

Keys and Constraints

Keys can be used for defining constraints:
● Null values: allowed / prohibited

withKey1Null
● Duplicate values: allowed / prohibited

withKey1Duplicates

Shortcuts:
● WithPrimaryKey1: not null, no duplicates

withUniqueKey1: no duplicates except null

Keys and Sorting

Keys can also be sorted:
● Sorting: the order of keys can be random or sorted (using

natural order or a custom comparator)
● Sorting a key does not sort the collection itself
● Use withOrderBy for this

More Constraints

● Only positive numbers
withConstraint(i -> i>=0)

● Define maximum size of collection
withMaxSize(10)

● Define maximum size as window
withWindowSize(10)

● Triggers
withBeforeInsert / withAfterInsert
withBeforeDelete / withAfterDelete

Classes

API Overview

● KeyList classes implement the IList interface
(i.e. List and Deque)

● KeyCollection classes implement the JDK
Collection interface

● Use asSet() / asMap() for accessing the elements
as JDK Set or Map

API Methods

● Element Set
contains, remove, indexOf,
put, getAll, getCount, getDistinct, removeAll

● Key Maps
containsKey1, getByKey1, getAllByKey1,
getCountByKey1, getDistinctKeys1, putByKey1,
removeByKey1, removeAllByKey1,
indexOfKey1

API Usage

● cols.add(new Column("A"));
- ok

● Column col = cols.getByKey1("A");
- retrieve element

● cols.add(new Column("A"));
- fails with DuplicateKeyException

● cols.putByKey1(new Column("A"))
- replaces element

● cols.removeByKey("A")
- removes element

Implementation

● Key Collections use other collections as building blocks:

– GapList / BigList (or its primitive variants)
– HashMap / TreeMap

● The needed components are chosen according to
configuration if the collection is built

Layout

Column list example: needs GapList / HashMap

Removal by key needs iterating...

Example: UseItAll

● Key2List<Task,Integer,String> list =
new Key2List.Builder<Task,Integer,String>().

withElemSet().
withKey1Map(Task::getId).withPrimaryKey1().

withOrderByKey1(int.class).
withKey2Map(Task::getExtId).withUniqueKey2().

withKey2Sort(true).
build();

● class Task {
int id; String extId;

};

Layout: UseItAll

Needed Components:
GapList / HashMap / IntObjGapList / TreeMap

Example: Constraint List

● A List which accepts only positive integers
new KeyList.Builder<Integer>().

withConstraint(i -> i>=0).build()
● A List which accepts only ten elements

new KeyList.Builder<Integer>().
withMaxSize(10).build()

Example: Set List

● SetList combines a list with fast access by element
● A Set List which accepts also null and duplicates

new KeyList.Builder<String>().
withElemSet().build()

● A Set List which accepts only unique values
new KeyList.Builder<String>().

withPrimaryElem().build()
● Note that the element set is automatically created

Example: Sorted List

● A list of Files sorted by name
● Key1List<File,String> list =

new Key1List.Builder<File,String>().
withKey1Map(File::getName).
withPrimaryKey1().withKey1OrderBy(true).build();

● But should there be something like a sorted list?

Example: Multi Set

● MultiSet stores only the count of occurrences for elements
● An unordered MultiSet

new KeyCollection.Builder<String>.
withElemCount().build()

● A sorted MultiSet
new KeyCollection.Builder<String>.
withElemCount().withElemSort(true).build()

● Option withElemCount() is only applicable for
KeyCollection

Example: BiMap

● A BiMap where both key maps are sorted
● Key2Collection<Zip,Integer,String> zips =

new Key2Collection.Builder<Zip,Integer,String>().
withKey1Map(Zip::getCode).withPrimaryKey1().

withKey1Sort(true).
withKey2Map(Zip::getCity).withKey2Sort(true).

build();
● class Zip {

int code; String city;
}

Using Key Collections - Raw

● Type parameters are tedious to repeat
● Key1List<Column,String> cols =

new Key1List.Builder<Column,String>.
withKey1Map(Column::getName).
withPrimaryKey1().build();

● void func(Key1List<Column,String> cols) {}

Using Key Collections - Refined

Create concrete type to hide type parameters
● class ColumnList extends

Key1List<Column,String> {
ColumnList() {

getBuilder().
withKey1Map(Column::getName).
withPrimaryKey1().build();

}}
● void func(ColumnList cols) {}

That's all folks!

www.magicwerk.org

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56

